CHAPTER 3. ALGORITHMS FOR DIOPHANTINE APPROXIMATION.

3.1. Introduction.

In this section we give details of the computational methods we use to reduce
upper bounds for the solutions of diophantine equations. Our starting point
will always be a linear form A , that is close to O (in the real or p-adic
sense, with the word "close" defined explicitly in terms of an inequality
involving the unknowns), together with a large but explicitly known upper
bound for the absolute values of the unknowns. Our aim is to reduce the upper
bound by showing that there are no solutions between the new and the old

upper bound.

for a fixed prime

;

Let ¢ Ce 6n, B be given numbers, in R , or in Qp

P . Let x cees X be unknowns in Z . Put

We classify such linear forms according to three criteria:
> homogeneous if B = 0 , inhomogeneous if B = 0 ;
> one-dimensional if n =2 , multi-dimensional if n > 3 ;

- real if all the numbers are in R , p-adic if all the numbers are in Q

The reason that the case n = 2 is called one-dimensional is that in the
homogeneous case the linear form
= x,-9, + x,-0
A= x)B) Xy

leads to studying the simple, one-dimensional continued fraction expansion of

—61/§2 . The inhomogeneous case with n =1 , viz.
A=+ x9

is not of any interest in the real case, but it is of interest in the p-adic

case. We call this the zero-dimensional case.

In the p-adic case we require that the quotients ﬁi/ﬂj and ﬁ/ﬂj are in
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@p itself, whereas the numbers ﬁi, B are allowed to be in some larger

subfield of Qp

Let ¢, § be positive constants. Put X = maxlxi| . Let XO be a (large)

positive constant. In the real case we shall always assume that

|A] < c-exp(-6-X) , (3.1)

XsXO . (3.2)
Let c1r be real constants, with ¢, > 0 . In the p-adic case we shall
assume that Xj > 0 for some index j € {1,...,n} , and

ordp(A) > ¢ + cz-xj , (3.3)

X =< XO . (3.4)
Our aim is to find a constant X1 , of the size of log XO , such that in the
real case (3.2) can be replaced by X < X1 , and in the p-adic case the bound
Xj < XO (a consequence of (3.4)) can be improved to xj < X1
In the forthcoming sections we treat all cases, according to the

e : : . : 3 .
classification given above. We insert Sections 3.4, 3.5 on the L -algorithm,
which will be our main computational tool, Section 3.6 on finding short
vectors in lattices, and Section 3.13 on certain sublattices that are useful

for our applications.

3.2. Homogeneous one-dimensional approximation in the real case: continued

fractions.

We first study the case
A= xl~01 + x2-62

Put O = —61/62 . We assume that 9 is irrational. Let the continued

fraction expansion of ¥ be given by
8 =1{a,, a,, a R B

and let the convergents pn/qn for n=20, 1, 2, ... be defined by
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{ Pp=b Ppmag ., P oTagPLtP
’ q0 -1, qn+1 B an+1'qn + qn-l

It is well known that the convergents satisfy the inequalities

P
——L <=2t (3.5)
(an+l+2)'qn n #n+1 9
and that if p/q satisfies the inequality
1o -B <L (3.6)
g9 2-q

then p/q must be one of the convergents (cf. Hardy and Wright [1979],
Theorems 163, 171 and 184).

2[ , that Xy >0 ,

x2) =1 . From (3.1) it follows that there exists a number X

We may assume without loss of generality that |01| < |9

and that (Xl’
such that X > X implies X = Xy and (3.6) for (p,q) = (—xz,xl) . We now

have the following criteria.

LEMMA 3.1. (i). If (3.1) and (3.2) hold for Xgs Xy with X = X* , then

(~x2,x1) = (pk,qk) for an index k that satisfies

1
k < -1 + log(/5-X +1) /Llog ([(1+/5)] . (3.7)
Moreover, the partial quotient a1 satisfies
a > -2 4 10, -c Lex (6-q,) (3.8)
K+l 19517c ~rexpls-ay)/qy :

*
(ii). If for some k with 9 > X
> 16, (¢ Trexp(6-q,)/ 3.9
A1 7 I9plre rexp(érap) /ey

then (3.1) holds for (_XQ’Xl) = (pk,qk)

Proof. (i). By X = X* and (3.6) it follows that (_XZ’XI) = (pk,qk) for

an index k . Since q is at least the (k+1) th Fibonacci number, (3.7)
follows from Qe = X = X = Xo . To prove (3.8), apply (3.1) and the first
inequality of (3.5).

(ii). Combine (3.9) with the second inequality of (3.5). O
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We may apply Lemma 3.1(i) directly, or as follows.

LEMMA 3.2. Let

)

A = max(ak+l

where the maximum is taken over all indices k satisfying (3.7). If (3.1)

and (3.2) hold for x X with X > X, , then

1 72 1
X < X1 (c-(a+2)/19,1) + L10g x
Remark. From Lemma 3.2 an upper bound for X follows. We can apply Lemma

2.1 here, but Lemma 2.1 is sharp for large b only.

Proof. (3.1) and (3.5) yield
( +2) - 2o 4 e JIAL > q |9, -1 (6-X)
a ¥ -an > g 9, 1/1A0 > q - [9,]-c -exp

The result follows by applying Lemma 3.1(i). a

In practice it does not often occur that A 1is large. Therefore this lemma

is useful indeed.

Summarizing, this case comes down to computing the continued fraction of a
real number to a certain precision, and establishing that it has no extremely
large partial quotients. This idea has been applied in practice by Ellison
[1971b], by Cijsouw, Korlaar and Tijdeman (appendix to Stroeker and Tijdeman
[1982]), and by Hunt and van der Poorten (unpublished) for solving
diophantine equations, by Steiner [1977] in connection with the Syracuse
(’3:N + 1') problem, and by Cherubini and Walliser [1987] (using a small
home computer only) for determining all imaginary quadratic number fields

with class number 1. We shall use it in Chapters 4 and 5.

3.3. Inhomogeneous one-dimensional approximation in the real case: the
Davenport lemma.

The next case is when A has the form

A=8+ Xl~§l + x2~@2 ,
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where B = 0 . We then use the so-called Davenport lemma, which was
introduced by Baker and Davenport [1969]. It 1is, 1like the homogeneous
one-dimensional case, based on the simple one-dimensional continued fraction

algorithm.

Put again © —61/62 , and put ¢ = ﬂ/ﬁz . Then we have

A
Y P - xl-ﬁ + x

2
2

Let p/q be a convergent of ¢ , with q > Xo . We now have the following

result.

LEMMA 3.3. (Davenport). Suppose that, in the above notation,

la-el > 2-%y/a , (3.10)

(by ”-H we denote the distance to the nearest integer). Then the solutions

of (3.1), (3.2) satisfy

1 2
X < z-log(q - e/|9,1 Xy) (3.11)

Proof. From (3.5) and (3.10) we infer
2:X/q < Jla (=xgorx ) 4x g (qo-p) | < ar[A/9, ] + Ixy1/q
By (3.1), (3.2), and

X, < qz-c«|6—1]~exp(—6-x) R

0 2
this leads to (3.11). 0
If (3.10) is not true for the first convergent with denominator > XO , then

one should try some further convergents. If q 1is not essentially larger
than XO , then (3.11) yields a reduced upper bound for X of size log XO s
as desired. If no q of the size of XO can be found that also satisfies
(3.10) (a situation which is very unlikely to occur, as experiments show),
then not all is lost, since then only very few exceptional possible solutions

have to be checked. See Baker and Davenport [1969] for details.

Summarizing, we see that in this case the essential idea is that an extremely

large solution of (3.1) and (3.2) leads to a large range of convergents p/q
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of © for which the values of |q-9¥| are all extremely small. In practice
it appears to be the case that q-¥ 1is always far enough from the nearest
integer (the values of “q-¢” seem to be distributed randomly over the
interval [0,0.5] ). This method has been used in practice by Baker and
Davenport [196%] as we already mentioned, by Ellison, Ellison, Pesek, Stahl
and Stall [1972], and by Steiner [1986]. We shall use it in Chapter 4.

3.4. The L3—lattice basis reduction algorithm, theory.

To deal with linear forms with n > 3 , a straightforward generalization of
the case n = 2 would be to study multi-dimensional continued fractions. For
a good survey of this field, see Brentjes [1981]. However, the available
algorithms in this field seem not to have the desired efficiency and
generality. Fortunately, since 1981 there is a useful alternative, which in a
sense is also a generalization of the one-dimensional continued fraction

algorithm.

In 1981, L. Lovdsz invented an algorithm, that has since then become known as
the L3—a1gorithm. It has been published in Lenstra, Lenstra and Lovész
[1982], Fig. 1, p. 521. Throughout this and the next section we refer to this
paper as "ZEL". The algorithm computes from an arbitrary basis of a lattice
in R™ another basis of this lattice, a so-called reduced basis, which has

certain nice properties (its vectors are nearly orthogonal).

The algorithm has many important applications in a variety of mathematical
fields, such as the factorization of polynomials (ZE£), public-key
cryptography (Lagarias and Odlyzko [1985]), and the disproof of the Mertens
Conjecture (0Odlyzko and te Riele [1985]). Of interest to us are its
applications to diophantine approximation, which already had been noticed in
LXr, p. 525. The algorithm has a very good theoretical complexity
(polynomial-time in the length of the input parameters), and performs also

very well in practical computations.

Let T ¢ R be a lattice, that is given by the basis hl’ e, hn . We

introduce the concept of a reduced basis of I' , according to EXZE, p.516. The
*

vectors hi (i=1, ..., n) and the real numbers By j (1=j<i=<n)

are inductively defined by
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i-1

b =b. - J b (b,,b}) / (br,b))
S SN U R TS B S S
* * n
Then Ql’ R, Qn is an orthogonal basis of R . We call the lattice basis
b., , b of T reduced 1if
1 n
|;ti’j|§% for 1 <=j<i=<n,
* * 2 3 * 2 .
Ihi+ui,i—1'hi—1| > :.'bi—ll for 1 <i=<n
Hence a reduced basis is nearly orthogonal. For a reduced basis bl’ e, hn
we have, by ZXL (1.7),
* —(n—
b, | = 2 (n 1)/2~|g1| for i=1, ..., n . (3.12)

We remark that a lattice may have more than one reduced basis, and that the
ordering of the basis vectors is not arbitrary. The L3—algorithm accepts as
input any basis bl’ e, hn of I , and it computes a reduced bhasis
S oehogy of that lattice. The properties of reduced bases that are of
most interest to us are the following. Let y € R” be a given point, that is
not a lattice point. We denote by {(I') the length of the shortest non-zero

vector in the lattice, viz.

L) = min (x| ,
O=xel
and we denote by {(I',y) the distance from y to the lattice point nearest

to it, viz.

4(T,y) = minjx-y|
xel’
From a reduced basis lower bounds for both L(T) and &I,y can be
computed, according to the following results.

LEMMA 3.4. (lenstra, Lenstra and Lovasz [1982]). Let c e, be a

=1’ n

[¢]

reduced basis of the lattice T . Then
ey 2 272

Proof . This is Proposition (1.11) from ZEE. We recall the proof here. Let

0 #»x €T be the lattice point with minimal length |x| = £(I') . Write
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i=1 i=1
*
with r, € z r; € R . Let io be the largest index such that r, - 0
* Oy
Then, since € --+» & span the same linear space as hl‘ . hi for
*
. ‘e . . ]
all i , and hi+1 is the projection of €41 o©n the orthogonal complement
*
of this linear space, it follows that r., = o Hence, by (3.12),
Yo 0
iO
* * * * *
t(F)Z _ IXI? -7 r12 thZ > rl2 |hi |2 . ‘lbi |2
i=1 0 0 0 0
= p) 172 27 o
i 1
0
LEMMA 3.5. Let L be a reduced basis of the lattice T , and let
n
Yy = izlsi~gi for S10 cee0 Sy € R , with not all s; in Z . Let iy be
the largest index such that 5 & Z . Then
0
—-(n-1)/2
R I A O AT
0
Proof. The proof of this lemma resembles that of Lemma 3.4. Let x € I' be
the lattice point nearest to y . So |x-y] = &(T,y) . Write
n n ., n n o,
x= )ryrep = Lrghy o y= bspep = Josicby
i=1 i=1 i=1 i=1
* *
with T e Z , T, S;, 8y e R . Let il be the largest index such that
r, #s Then, reasoning as in the proof of Lemma 3.4, we find
1 1
*
r, - s; =T, - s,
1 1 1 1
Using (3.12) it follows that
* —(n-
R e e W N O L I P
1 1 1 1 1
Obviously, i z i, . If i, =i, the result follows at once. If i > i
then s, €Z, s, »1r., , hence |r, -s. | 21 , and the result follows. @)
i i iy i, 7L
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The above lemma is rather weak in the extraordinary situation that s is
0
extremely close to an integer. If one of the other EH is not close to an

integer, we can apply the following variant.

LEMMA 3.6. Let ¢ (- be a reduced basis of the lattice T , and let

10 o
n

Y = izlsi~gi for S35 -0 S, € R , with not all s; in Z . Suppose that
there is an index io and constants 61 , 0< 62 < % such that

”Si” < 61 for 1 = 1O+1, e, o,

Is; 125,

0
Then
-(n-1)/2 . _ .
{(T,y) = 2 62 |91| (n—lo) 61 Ta¥ Igi|
1>10

Proof. With notation as in the proof of Lemma 3.5, let t, be the integer

nearest to s, , for i =i, + 1, and t, = s, for i =<i, . Put
i 0 i i 0
n n .
z= ) tye; = Ltyiby
i=1 i=1
with t, e R Let i be the largest index such that r, At Then
1 1
r, -t =r, -t
1 1 1 1
We have
Lr,y) = |2yl =z [2-z| - |z-y|
Now,
n
lz=yl = % Is;=t;l-le;l = (n-ig)-§ -max |e| ,
i=i +1 i>i
0 0
and, using (3.12),
n
2 * 2 2 2 * 2
fx-z|” = % (r -t ) byl 2 (xy -ty )by |
i=1 1 1 1
> (r, -t )52 ")
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Obviously, > i . If i, =1 the result follows at once. If i, > i

! 0 1 0 1 0

then ti e Z, ti = ri , hence |ri —ti | =21 > 52 , and the result
1 1 1 1 1

follows. O

Remark. Babai [1986] showed that the L3—a1gorithm can be used to find a
lattice point x with |[xz-y| = c¢-£(I',y) for a constant c depending on the
dimension of the lattice only. This result can also be used instead of Lemma

3.5 or 3.6.

3.5. The L3—1attice basis reduction algorithm, practice.

Below we describe the variant of the L3-a1gorithm that we use in this thesis
to solve diophantine equations. This variant has been designed to work with
integers only, so that rounding-off errors are avoided completely. In the
algorithm as stated in ZELX, Fig. 1, p. 521, non-integral rational numbers may
occur, even if the input parameters are all integers.
Let T ¢ Z" be a lattice with basis vectors hl’ e, gn . Define bj, ”ij’
di as in ZEE (1.2), (1.3), (l1.24), respectively. The di can be used as
denominators for all numbers that appear in the original algorithm (XEE, p.

523). Thus, put for all relevant indices i, j

*
c. = d ‘b, ,
= i

Lol (3.13)
A =d,-
i, 7 %573
They are integral, by ZEE (1.28), (1.29). Notice that, with Bi = |b |2 N
d, =d, ,-B, . (3.14)

We can now rewrite the algorithm in terms of S di’ Xi i
, thus eliminating all non-integral rationals. We give this variant

*
in stead of hi’

B.
1

g
of the L3—a1gorithm in Fig. 1. All the lines in this variant are evident from
applying (3.13) and (3.14) to the corresponding 1lines in the original

algorithm, except the lines (A), (B) and (C), which will be explained below.

We added a few lines to the algorithm, in order to compute the matrix of the
transformation from the initial to the reduced basis. Let B8 be the matrix

with column vectors hl’ e, bn , the initial basis of the lattice T
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Figure 1. Variant of the L3—algorithm.

dO =1 ;
¢, =Db. ;
i i
Ay = (bye)
+J J for j=1,...,i-1 ; } for i=1,...,n ;
a) ey = (dyrey=dy yred/dy
d; 1= (gg,e50/dy
k = 2 ;
(1) perform (*) for { = k-1 ;
: 2 2 .
if A-dk_z»dk < 3~dk_ - A'Ak,k—l go to (2) ;
perform (*) for ¢ =%k-2, ..., 1 ;
if k = n terminate ;
k = k+tl ; go to (1) ;
by by
(2) b i ;
“k “k-1
V'T YT
— _ ’ YT - IT ’
uk el Kk k-1
A . A,
i_l’J = 3 k.3 for j =1, , k-2 ;
k,j k-1,]
A A
i, k-1 k,k-1 -2
(B) ’ & R + AL ) /
Ai,k } i k-1 dk ik _Ak,k—l dk—l
for 1 = k+l, , g
2
© O e I S R S R
if k> 2 then k := k-1 ;
go to (1) ;
(*) if 2'|Ak’t| > dﬁ then
r := integer nearest to Ak,L/d ;
. - . . P - . . IT = IT . IT
b :=b -rb; u =y -ru; ¥ vgo try
Ak,j = Ak,j - r-XL’j for j =1, , -1 ;
Ak,L 1= Ak,L r~dL .
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which is the input for the algorithm. We say: 38 1is the matrix associated to

the basis hl’ e, hn . Let € be the matrix associated to the reduced

basis €1s e & which the algorithm delivers as output. Then we define

this transformation matrix V by
t =87

More generally, let U be the matrix of a transformation from some 30 to

B, so B =28 -U . Denote the column vectors of % by u and the

0

20

10

row vectors of ﬂ—l by yiT, R yﬁT . We feed the algorithm with U and
U also. All manipulations in the algorithm done on the hi are also domne
on the u, and the ! are adjusted accordingly. This does not affect the

computation time seriously. The algorithm now gives as output matrices U ,
1

U4 and U’ ~ , such that & 1is associated to a reduced basis, € = 8-V ,
and U’ = U-¥ . Note that ¥ is not computed explicitly, unless U =3 (the
unit matrix), in which case U' =¥ . It follows that
-1
=849 U =28_-1U ,
0
so U’ 1is the matrix of the transformation from 8 to € . Note that if

0

-1 S -1
BO is known, then it is not much extra effort to compute ¥ as well.

We now explain why lines (A), (B) and (C) are correct.

(A): From EEE (1.2) it follows that

i-1 di—l
€ = di1hy - kglaijzfai'*i,k'gk :
Define for j =0, 1, , i-1
. 1 dj
Qi(J) = dj‘hi - kzlaijzfa;'ki’k'gk .
Then gi(O) = hi , and gi(i—l) =<, - The gi(j) is exactly the vector

computed in (A) at the j th step, since

dj-gi(j-l) - Xiyj-gj

j-1  d, a,

] ] ;
b, - Y ——a—x, e - oA g, = c.
j i kzldk—l'dk i,k 7k dj—l.dj i,j &J —1(J>

This explains the recursive formula in line (A). It remains to show that the
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occurring vectors gi(j) are integral. This follows from

% —L % ;
d, - ‘X, ¢, = d.- B. b,
I ali9r e bR TR T o Lk Tk

which is integral by ELZ p. 523, £. 11.

(B), (C): Notice that the third and fourth line, starting from label (2), in
the original algorithm, are independent of the first, second and fifth line.
Thus a permutation of these lines is allowed. We rewrite the first, second
and fifth line as follows, where we indicate variables that have been changed

with a prime sign.

' - 2 . .
Bly = Bty 1B (3.15)
B/ i= B -B /Bl | ; (3.16)
Pl FT Poke1 BB (3.17)
BLkel 7 Mokel Paeel OB e e Pk (3.18)
Pl TRkl T MRok-1 Pk (3-19)
where (3.18) and (3.19) hold for i = k+1, ..., n . The di remain unchanged
for i =0, 1, ..., k-2 , and by (3.16) also for i = k . Now, (3.15) is
equivalent to
' Az
Y1 % Mkl %
dk = dk + 5 © g R (3.20)
-2 -1 dk—l k-2

which explains (C). From (3.17) we find

Mok-1 - kel %1 %2

1 Y1 Yo Y]

hence remains unchanged. From (3.18) we obtain

Me k-1

Mol Mkl Mokl [ Lo ek Mok J ik
hee1 %1 %k G %
whence, by multiplying by dk—l'dﬁ—l and using (3.20),

Ak

' = . .d’ 2 .
B 1M kel T Mokl Mok-1l T O %e1 % T M k-1 )

P
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Finally, from (3.19) we see

Mr Mokl Mk

G ke B K

and (B) follows.

In our applications we often have a lattice T , of which a basis is given

such that the associated matrix, ¢ say, has the special form

6 ... 6, 16 |

where the ei are large integers, that may have several hundreds of decimal
digits. We can compute a reduced basis of this lattice directly, using the
matrix o itself as input for the L3—algorithm, But it may save time and
space to split up the computation into several steps with increasing

accuracy, as follows.

Let k Dbe a natural number (the number of steps), and let { be a natural
number such that the ei have about k-£ (decimal) digits. For

i=1, ..., n and j =1, ..., k put

) _ £ (el
o)) - (e;/10 .

and define

(3>
Wi by

oD _ 1obed) 4 (D)
i i i
Thus, the WgJ) are blocks of ¢ consecutive digits of Gi . Define for the

relevant j the n X n matrices

1
]
a3
4 = D. = ,
J ¢¢ 1. . ' J .
&R g(d) g (3 <3
1 n-1 n n
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Then it follows at once that

o, =B84, + 0,
j+l ] ]

Notice that ﬂk =d , since Sik) = ei . Put %, =93 , B8 =4 . For some

0 1 1

be known matrices. Then we apply the L -algorithm

j =21 let 8, and 4.
J b j-1

to 8 =8_ , )
J

-1 and ﬂ_l . We thus find matrices Gj ﬂj and
ﬂj_l such that

Now put

B, -850, + D, U,
jn NN BN
By induction Bj , Cj and ﬂj are defined for j =1, ., k . Note that

-1 1

B, -U.T =B-B_-U . + D

J+L ] j i ]
so the 3.-ﬂ5}1 satisfy the same recursive relation as the ﬂj . Since

-1 -1
. - 4 _— -

Bl MO dl , we have $j j-1 3 for all j Hence

” -1

C. =8,.-%, "%, =4 -U ,

J Ji-1 73 i
and it follows that Ck and ﬂk are associated to bases of the same
lattice, which is T . Moreover, since € is output of the L3—algorithm, it

k

is associated to a reduced basis of T .

Let us now analyse the computation time. For a matrix M we denote by L(AM)
the maximal number of (decimal) digits of its entries. If the L3—algorithm is
applied to a matrix 8 , with as output a matrix &€ , then according to the
experiences of Lenstra, Odlyzko (cf. Lenstra [1984], p- 7) and ourselves, the
computation time is proportional to L(B)3 in practice. Since € is

associated to a reduced basis, we assume that

L) = 1Olog(det )/n .

4

In our situation, L(dj) = {3, L(Dj) £ , and since det Cj = det 4, =
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D) o, ‘ PRE) D
Gn , we have L(Gj) = {.j/n . Put Gj = (Ci,h) , ﬂj = (ui,h) . then by
. = o, -U, and the special shape of o, we have CSJ) = ugJ) for
J J ] ]J i,h i,h
i=1, ..., n-1 and h=1, ..., n, and
(3 _ (3) 5 _ Gy g P (3>
R G e RN St AL J M A A

It follows that L(ﬂj) = L(Cj) . So

L(8;) = max ( LE-C, )y L0y 4 U ) )=t + 2 (G-1/n .

Instead of applying the L3—algorithm once with 4 as input, we apply it k

times, with 8 B as input. Thus we reduce the computation time by a

1o B
factor
Lest) > B t-x)° B Kon
k Tk k-1
3 3 j-14 3 .3
Y L) v (1) Y (n+))
S j=0

2

For k between 2.5-n and 3-n this expression is maximal, about 0.4'n

So the reduction in computation time is considerable (a factor 10 already for
n = 5 ). The storage space that is required is also reduced, since the
largest numbers that appear in the input have L-(l+(k—1)/n] instead of {-k

digits.

3.6. Finding all short lattice points: the Fincke and Pohst aigorithm.

Sometimes it is not sufficient to have a lower bound for £(T') or {&(T,y)
only. It may be useful to know exactly all vectors x € I' such that |[x]| = ¢C
or |x-y| = C for a given constant C . There exists an efficient algorithm
for finding all solutions to these problems. This algorithm was devised by
Fincke and Pohst [1985]}, cf. their (2.8) and (2.12). We give a description of

this algorithm below.

The input of the algorithm is a matrix 8 , whose column vectors span the
lattice I , and a constant C > 0 . The output is a list of all lattice
points x € T with |[x| < C , apart from x = 0 . We give the algorithm in
Figure 2. We use the notation X = (xij) for matrices X =4, 8, R, ¥, U,
and -9 for the column vectors of X .

The algorithm can also be used for finding all vectors x € I' of which the
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Figure 2. The Fincke and Pohst Algorithm.

4 = BT~$ ;
qlJ 1= 1] for 1 <i=<j=<n;
qu = qij , qij i= qij/qii for 1 <i<j=<n;
Qg = g 7 Y1942 for itl <k =<{=<n for 1
Iy oiT /qii for 1 <i=<n;
r., :=r,.-q.. , r.. =0 for 1 <j<i=<n,;

ij ii *ij ji

-1
compute R ;
compute a row-reduced version f_l of Rwl , and U, U
that # 1 - v t.gl
compute ¥ = R-U ;
determine a permutation =« such that |§ﬂ(1)| -
let ' be the matrix with columns s -1
T © (1)

4 =P
qlJ = 25 for 1 <=1i=<j=<n;
qji = qij s qij = qi‘/qil for 1 <1i<j=<n
EIs Qg ~ 91 94 for i+l <k =<{f<n for 1<
i t=mn;
T, :=C ;

i
U, =0 ;

i

(L) z = /(T /454 5
UB(x,) := lz-u,] s
X, = [—Z—U11 -1 ;
(2) Xy o= Xy + 1 ;

if Xg < UB(xi) , go to (4) ;
(3) 1 :=1+1;

go to (2) ;
(4) if i =1, go to (5) ;
i =1i-1;
m
U, := ) q.."X. ;
* j=i+1 3 ”
Ty = Tien 7 %441, 501 Byt
go to (1) ;
(5) 1if X, = 0 for 1 <1i=<n, terminate ;
compute and print x = U-(x -1 v X g )T ;
(L) © " (n)

go to (2).
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distance to a given non-lattice point y 1is at most a given constant C

Namely, let

<
I
[N aek=]
n
I

and let T be the integer nearest to S5 for all i . Put

IN
il
[Raek=]
a1
1o

Then |y-z| < C’' for some constant C' (¢ = g-Z|hi| will do). Since
z € T it suffices to search for all lattice points u with ju] < C + C' ,

and compute for each such u also x =2z + u , since |[x-y] < C implies

|lu] = |x-y| + [y-z| = C + C'

3.7. Homogeneous multi-dimensional approximation in the real case: real

approximation lattices.

let the linear form A have the form

n
A= .Z X ﬁi
i=1
We assume that n = 2 . The case n = 2 has already been discussed in
Section 3.2, but the method of this section works also for n = 2 . In fact,

it is in this case essentially the same method.

n
0
Let v € N be a constant (we will explain its use later). We define the

Let C be a large enough integer, that is of the order of magnitude of X

approximation lattice T by giving the matrix

¥
]
B
& )
i
[y €91 ... [yCo 41 [y Co ]
of which the column vectors hl’ e, hn are a basis of the lattice. Then T
is a sublattice of Z° of determinant 7n_1‘[7-C-6n] , which is of size C

A lattice point x has the form
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where the x; are integers, and

>0
[}
[ asfe]

X, [y-C9.]

i=1

Clearly, A is close to ~-C-A . The length of the vector x now measures
both X and |A] , which are exactly the two numbers we want to balance

0
with each other. We express this in the following lemma.

LEMMA 3.7. Let X1 be a positive number such that

6 = /(D) (1) 47) X, (3.21)
Then (3.1) has no solutions with

l-log(7~C-c/X )y = X <X (3.22)

) 17 - -7 ’
Remark. We apply this lemma for X1 = XO . If condition (3.21) then fails,
we must take a larger constant C . If it holds for a constant C of the
size Xg , then (3.22) yields a reduced lower bound for X of size log XO
Proof. Let Xpy s X be a solution of (3.1) with 0 < X < Xl . Consider
the lattice point

o ~ T
X = z x;cboo= (yexg o vx g A

i=1

with A as above. Then

n-1
|2S|2 = 72- Y <24 R < (n—l)-72»X2 + 52 7
. 1 1
i=1
and
[A-y-Conl = ) dxg ) Hv-Cogl=y-Cooyl = 4 Ixgl (3.23)
i=1 i=1

which is at most n-Xl . By (3.1), (3.21) and the definition of {(TI') we

have

y¥-C-c-exp(=§-X) > |7-C-A| = [A| = |A-y-C-A]
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> /(U0 (1) 7" x]) - nx 2 X

and (3.22) follows at once. 0O

Condition (3.21) can be checked by computing a reduced basis of the lattice
' by the L3—a1gorithm, and applying Lemma 3.4. The parameter vy 1is used to

keep the "rounding-off error"
[{y-Co;]-7-C-0 ]

relatively small. This is of importance only if C is not very large,
usually only if one wants to make a further reduction step after the first

step has already been made. For large C , simply take «y =1

It may be necessary, if C 1is not very large, to use a more refined method
of reducing the upper bound. To do so, we use the following lemma, which is a
slight refinement of Lemma 3.7, together with the algorithm of Fincke and
Pohst (cf. Section 3.6). It is particularly useful in the situation that one

has different upper bounds for the |xi| for different i

LEMMA 3.8. Suppose that for a solution of (3.1)

n
1Al > Ixgl (3.24)
i=1
holds. Then
1 . n
X < g-log[7~c-c/[]A|— ). |xi|j . (3.25)
i=1

Proof. Define the lattice point x as in the proof of Lemma 3.7. By (3.23)

and (3.24)

n
1Al = (1A)= X Ix;1)/v-C >0
i

The result follows at once by (3.1). O

We proceed as follows. Choose a constant CO such that if |K| > CO then

the upper bounds for ]xil imply (3.24). In that case we have a new upper

bound for X from (3.25). In case |A| < C, we have an upper bound for the

0
length of the vector x . We compute all lattice points satisfying this bound
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by the algorithm of Fincke and Pohst, and check them for (3.1).

Summarizing, the reduction method presented above is based on the fact that a
large solution of (3.1) corresponds to an extremely short vector in an
appropriate approximation lattice. Since we can actually prove by
computations that such short vectors do not exist, it follows that such large
solutions do not exist. We will apply the above described techniques in

Chapter 5.

3.8. Inhomogeneous multi-dimensional approximation in the real case: an

alternative for the generalized Davenport lemma.

Let A be the most general linear form that we study, viz.

where n = 2 (the case n = 2 has been dealt with in Section 3.3, but can
be incorporated here also). To deal with this inhomogeneous case, two methods
are available. The first method is a generalization of the method of
Davenport that we discussed in Section 3.3. The second method is closer to

the homogeneous case of the previous section.

First we explain briefly the generalized Davenport method. See Ellison

[1971a] {(where only the case n = 3 1is treated). Put
y

61 = 61/6n for i=1, ..., n-1 , B' = ﬂ/@n ,
n-1
[ = £ 9!
A A/S = B+ .2 X O+ x
i=1
. . . , , .
Let (pl,...,pn_l,q)n_?e a simultaneous approximation to ﬁl, RN 6n—1 with
q of the size of XO , such that, for i=1, ..., n-1 ,

1+1/(n-1
|9:-p, /al < e’ /q T/ (7D

'

for a small constant c¢

LEMMA 3.9. (Davenport, Ellison). Suppose that

la-8'| > 2-(n—1)-x0.cr/q1/(n—1)
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Then the solutions of (3.1), (3.2) satisfy

1

X < g-log[q1+l/(n_l)-

c/[ﬁn[~c’~(n—1)~XO)

Proof. The result follows at once from

n-1
laws'l < larars X %y (pymarop | <

q~|6n|—l-c-exp(—5-X) + (r1—1)~X0~c'/ql/(n_1>

To apply this generalized Davenport method in practice, it is necessary to

compute the simultaneous approximations (pl,.‘.,pn_l,q) . We indicated in

Section 1.4 how this can be done with the L3—a1gorithm. As lattice we take

the one associated to the following matrix:

1
, ]
[C-?l] -G . ’
: & .
.' -_—
[C ﬁn—l] C
where C 1is a constant of size XS . Then (S the first basis vector of a
reduced basis, will have length of the size of C(n—l)/n = Xg_l . But (<8}
can be written as
¢, = (q, a-[c-®]]-C-p q-[c-o’ 1-C.p_; )T
=1 ! 1 1 " n-1 n-1
for some Pys ---s Phq 4 - It can be expected that q 1is of size Xg_l ,
and
O fS - [~ S{C-9'1=-C-
q-C-{oi-p,/al = |q-{C-91]-Cop,|
: n-1 . n-1 n-1
are of the size XO , so that Iﬂi—pi/ql are of the size XO /C-X0 =
C_l = X" = q—(1+1/(n—1)) as desired.

0

The above method has been applied in practice to solve Thue and Thue-Mahler
equations by Agrawal, Coates, Hunt and van der Poorten [1980] (using multi-
dimensional continued fractions 1instead of the L3~algorithm), Pethé and
Schulenberg [1987], and Blass, Glass, Meronk and Steiner [19878], [1987b]. So
it has proved to be useful. However, we prefer another method, for several
reasons. Firstly, it is close to the homogeneous case as described in the

previous section, whereas the generalized Davenport method has no obvious
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counterpart for the homogeneous case. Secondly, it actually produces
solutions for which the linear form A 1is almost as near to zero as possible
under the condition X < Xy - Thirdly, an analogous method for the p-adic
case can be given (see Section 3.11). Finally, if a linear relation between
the 61 exists, but had not been noticed before (a situation that sometimes
occurs when one solves e.g. Thue equations), the method detects these
relations, by finding explicitly an extremely short lattice vector giving the

coefficients of the relation. Concerning computation time we think that the

two methods are about equally fast.

The method works as follows. We take the approximation lattice T exactly as
in the homogeneous case, cf. the previous section, with constants v, C
chosen properly, i.e. C 1is of the size Xg . Compute with the La—algorithm
a reduced basis L A - of I' . Let € be the matrix associated to
this basis, and compute also the transformation matrix Y% with € = 8-U, and
its inverse ﬂ_l . Note that B_l , and hence also C_l , are easy to

compute, namely by

1/ - &
37t - 2 1/v
ylyCo by v Co ] [y GO ]

and the L3—a1gorithm. Let y € Z" be defined by

T n
y= (0, .., 0, =(v:CBl) = Tsiey,

i=1

where the coefficients s; € R can be computed by

T -1
(sl,. ..,er =0 -y .
. . -1 -1
To be more precise, if U has u as n th column, then ¥ has
u/[y:C¢-9_ ] as n th column, so
(s s )7 = —ulyCpl/lrCoo ]
177 T = n

Now we apply Lemma 3.5 or 3.6, that provide a lower bound for {(T,y) . Then

we can apply the following lemma.
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X

Let 1

LEMMA 3.10.
2 2
UT,y) = ¥/ ((n+2) +(n-1)y )-xl

Then (3.1) has no solutions with

1
3-1og(7-c-c/x1) < X =< X1

be a positive constant such that

(3.26)

(3.27)

Remark. We apply this lemma for X1 = XO If condition (3.26) then fails,
we musc take a larger constant C If it holds for a constant C of the
size Xg , then (3.27) yields a reduced lower bound for X of size log X0
Proof. Let Xy, , X be a solution of (3.1) with 0 < X < X1 Consider
the lattice point
o N
x = Y x;bo= (rxg, crx e By )
i=1
with
_ n
Ry = X x;-[y-C-9y)
i=1
Put A = [y:-C-B] + KO Then
n-1
|X—X|2 = 72- z x? + KZ < (n—1)~72-X2 + Xz ,
. i 1
i=1
and
- n
|A=y-C-Al = |[y-C-Bl=7y-C-Bl + Y Ix;1-1[7:C9;]-7-C-0,]
i=1
n
<1+ 'X x| =< 1 + nX, < (n+1)~X1
i=1
By (3.1), (3.26) and the definition of {£(I',y) the result follows, since
v-C-c-exp(~6-X) > |y-C-Al = |A| — |A=y-C-A|
> /(L(F 1)2—(n—1)~72~X2) - (n+1)-X, = X u]
- ’ 1 171

Again we may prove refinements of the above lemma,

the homogeneous case. We explained in Section 3.5.
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and Pohst algorithm in the inhomogeneous case. We do not work that out here.

Summarizing, the method described above is based on the fact that a large
solution of (3.1) in the inhomogeneous case leads to a lattice point
extremely near to a fixed point in 7" . We can actually prove by some
computations that such lattice points do not exist, so that such extreme
solutions do not exist. The method outlined in this section is wused in
Chapter 8. Note that in the case n = 2 the method is essentially the same

as the Davenport lemma.

3.9. Inhomogeneous zero-dimensional approximation in the p-adic case.

In the p-adic case we start with a very simple linear form A , to which also

a very simple reduction method applies. Let A be
A=B8+x9,

for B, 0 € such that /9 € ®p ,and x € Z , x>0 . It is obvious
that in the real case with such a simple linear form A inequality (3.1) has
only finitely many solutions (we even don't need (3.2)), and that they are
easy to compute. In the p-adic case however, inequality (3.3) may have

infinitely many solutions, so we do need a bound like (3.4), and a reduction

method.
Put 8’ = -B/8 . Then O’ € ®p . Inequality (3.3) now becomes
‘ - ot .
ordp(ﬁ X) = ¢y + Cyr X, (3.28)
where ¢ c are constants with ¢, > 0 . We assume that

1’ "2 2
X = —ci/cz

Then (3.28) has no solutions if ordp(ﬁ’) < 0 . Hence we may assume that '

is a p-adic integer. Let the p-adic expansion of 9’ be

where u; € { 0,1, ..., p-1 } for all 1i e NO . Compute the p-adic digits

ug far enough to be able to apply the following reduction lemma.
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LEMMA 3.11. Let X1 be a positive constant. Let r be the minimal index

such that
r
p >X,, u_ =0 (3.29)
Then (3.28) has no solutions with

(r—ci)/c2 <x =X (3.30)

1

Remark., We apply the lemma with X1 = X0 . The assumption behind the lemma
is that in the p-adic expansion of #' no long sequences of zeroes appear.
In fact, it seems that in our applications the numbers u, are distributed
randomly over ( O, 1, ..., p-1 } . Then the minimal r satisfying (3.29)
will not be much larger than log Xo/log p , and then (3.30) yields a reduced

as desired.

upper bound of size log XO ,

Proof. Let x

IA

X1 satisfy (3.28). Suppose that ordp(@’—x) >r + 1 . Then

u'_pl (mod pr+1)
Ol

»
i
I 1R

i

By x > 0 it follows from (3.29) that

r .
x> yu ~pl > ur~pr > pr > Xl ,

which contradicts the assumption x =< Xl . Hence ordp(ﬂ'—x) < r , and (3.30)

follows from (3.28). =]
Remark. In the above proof it is essential that x 2= 0 . It is however not
difficult to formulate a similar result that holds for all =x € Z , by

looking, if p » 2 for p-adic digits Uy that are not only »= 0 but also
» p—-1 , and if p = 2 for p-adic digits ug with u; Eug
A method very similar to the one described above was used by Wagstaff [1979],
[1981] for solving congruences such as 5" = 2 (mod 3n) . We apply the method

in Chapter 4.
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3.10. Homogeneous one-dimensional approximation in the p-adic case: p-adic

continued fractions and approximation lattices of p-adic numbers.

Let A have the form

A= X9+ %, 8,

where 61, ﬁz € Op such that ¢ = -61/62 [S @p , and x X, € Z . We may

assume that ordp(ﬁ) > 0 . Now

A = A/191 = - xl-ﬂ + X,

So (3.3) now means that the rational number XZ/Xl is p-adically close to

the p-adic number ¢

In analogy of the real case it seems reasonable to study p-adic continued
fraction algorithms. However, a p-adic continued fraction algorithm that
provides all best approximations to a p-adic number seems not to exist.
Therefore we introduce the concept of p-adic approximation lattices, as was
done in de Weger {1986a]. From this paper we adopt the best approximation
algorithm, which is a generalization of the algorithm of Mahler [1961],
Chapter IV. This algorithm goes back also on the euclidean algorithm, and
thus is close to a continued fraction algorithm. But it is not a p-adic
continued fraction algorithm in the sense that a p-adic number is expanded
into a continued fraction, and that the approximations are then found by
truncating the continued fraction.

19(u)

Recall that for U € NO the rational integer is defined by

0 the p-adic
approximation lattice Fp by a matrix to which a basis of F# is

ordp(ﬁ—ﬂ(“)) 2 p and 0 < 6(y) < pp . We define for any u € N

associated, namely the matrix

1 0

s o*

Then it is easy to see that

T _ 2
r,o=t (x.x) €77 | ord (x,-x

9) =
u ) = u )

1

(cf. Lemma 3.13 in the next section, where we prove a more general result).

The following algorithm computes the point of minimal length in F#
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Figure 3. p-adic approximation algorithm.

X = (1,6(”)JT ;Y = [O,pu)T ;
if }x| > ty]| , interchange x and y ;
(1) compute K € Z such that |y-K-x| 1is minimal ;
Yy i=y-Kx;
if }x| > {y| ., interchange x and y , and go to (1) ;

print x .

With this algorithm it is possible to compute L(P#) explicitly. Then we can

apply the following lemma.

LEMMA 3.12. Let X1 be a constant such that

L(F#) > ,/2~xl . (3.31)

Then (3.3) has no solutions with

(y—l—cl+ordp(62)J/cz <x; SXSXK L (3.32)

Remark. We take pu such that p“ is of the size of Xg , and apply the

lemma for X1 = XO . Then we expect that i(P#) is of the size of XO , SO

that (3.31) is a reasonable condition.

Proof. Apply the proof of Lemma 3.14 (in the next section) for n = 2 . ]
The above method has been applied by Agrawal, Coates, Hunt and van der
Poorten [1980]. We use it in Chapters 6 and 7.

3.11. Homogeneous multi-dimensional approximation in the p-adic case: p-adic

approximation lattices.

We now study the case

where 9, € QO such that d./8. e @, x, € Z for all i, j , and with
i P i773 P i

n = 2 . We may assume that ordp(ﬁi) is minimal for i =n . Put
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8 = -9./9 for i =1, ...,
1 1" n

Then ﬁi e Zp for all i . Put
n-1
A= N/D = —izlxi-ﬂi +x

The definition of the p-adic

directly from the one-dimensional case. Namely, for any

F” as the lattice associated to the matrix

L ‘ @ 1
& .
7
13,(;1) ) 19,(u) o*

1 o n-1

Then we have the following result.

LEMMA 3.13. The lattice F# s

is equal to the set

approximation lattices

can be generalized

p e N we define

0

associated to the above defined matrix B# ,

T n ,
r, =t (eooo0x ) €7 ord (A') = 4 )
Proof. For any X = [x X ]T € ' there exists a z = [z z ]T e 1"
Proof. X 10 %y u z 10 0%
such that x = Bu-g Then X, =z for i =1, ., n-1 , and
not (w) w_ o I
x = .Z zi-ﬁi +tz opho= .Z xi-ﬁ'i (mod p")
i=1 i=1
Hence ordp(A’) > u Conversely, for any x = (Xl,...,xn]T such that
ordp(A') > pu there obviously exists a 2z € 7" such that X = $#'g . ]

Using the L3—algorithm we can compute a lower bound for L(Fu)

Then we can

apply the following lemma, which is a direct generalization of Lemma 3.12.

LEMMA 3.14. Let X

1
L(r#) > /n-x1

Then (3.3) has no solutions with
[p—l-cl+ordp(ﬂn))/c2 < Xj <X < Xl
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Remark. We take u such that p# is of the size of Xg , and apply the
lemma for X1 = XO . Then we expect that L(F“) is of the size of XO , SO
that (3.33) is a reasonable condition.

Proof. Let Xys oo X be a solution of (3.3) with X < X1 Then (3.33)
prohibits the point [xl,...,xn]T from being a lattice point in F“ . Hence,
by Lemma 3.13, ordp(A') < u-1 , and (3.34) follows from (3.3). [m}
We will apply the results of this section in Chapters 6 and 7.

3.12. Inhomogeneous one- and multi-dimensional approximation in the p-adic

case.

Finally we study an inhomogeneous p-adic form

where 8, ﬁi € Qp such that ﬂ/ﬁj, 6i/ﬁj [S @p and x; € Z for all 1, j ,
and n > 2 . We assume that ordp(ﬁi) is minimal for i = n , and that

ordp(ﬂ) > ordp(@n) . Put

ﬁi = -ﬁi/ﬁn for i=1, ..., n-1, B = B/ﬁn s
n-1
A = A/19n =B - izlxilﬁi + X

Then g', ﬁi € Zp for all i . As p-adic approximation lattices we take the
lattices Fﬂ that were defined for the homogeneous case, i.e. for any
p el the lattice F# that is associated to the matrix 3# (see Section

0
3.11). Put further

(B) NT o n
x=(0, ..., 0, ¥ ) = Vs coe",
. i =i
i=1
where c¢., ..., ¢ is a reduced basis of I' , and s, € R . By Lemma 3.5 or
1 -n " i
3.6 we can compute a lower bound for 4£(I',y) . This is useful in view of the

following lemma.
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LEMMA 3.15. The set F“(y) = F# +y is equal to the set

T n ,

L, = (xy....x ) e | ord (A') = 4 |

Proof Let x = (x x )T satisfy x -y erT Note that
. X 17Xy X u
- ) T

X -y = [ Xl’ e, xn—l‘ xn—ﬂ ] .

By Lemma 3.13 we have
n-l (1) b

ordp[izlxi-ﬁi—(xn—ﬂ )) = pt .
The left hand side is just ordp(A') , which proves the lemma. a
Obviously, the 1length of the shortest vector in Fu(y) (a translated

lattice) is equal to L(F#,y) (unless in the case y € F” ). We have the

following useful lemma.

LEMMA 3.16. Let Xl be a constant such that

©r .y > /neX) (3.35)

Then (3.3) has nc solutions with

(-1— B

(v-1 c1+ordp(19n)J/c2 < xj < X < X1 . (3.36)
Remark. We take u such that p” is of the size of Xg , and apply the
lemma for Xo = Xl . Then we expect that C(F#,y) is of the size of X0 , SO

that (3.35) is a reasonable condition.

Proof. Let Xys o oees X be a solution of (3.3) with X < X1 Then (3.35)
prohibits the point (xl,...,anT from being in F#(y) . Hence, by Lemma
3.15, ordp(A') < pu-1 , and (3.36) follows from (3.3). m}

We shall not apply the above lemma in this thesis, so we have included it
here only for the sake of completeness. However, when solving Thue-Mahler

equations (see Section 8.6), it will be of use.
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3.13. Useful sublattices of p-adic approximation lattices.

In our p-adic applications of solving diophantine equations via linear forms,

we always have linear forms in logarithms of algebraic numbers, i.e. in

the B and 6i's are p-adic logarithms of algebraic numbers, say

B = logp(ao) s 6i = logp(ai) for i =1, ..., n .

In Section 2.3 we have seen that for a £ € @p if ordp(lif) > 1/(p-1) then

ordp(logp(&)) = ordp(li&) . In our applications we apply this to

for which ordp(&—l) is large. This implies that ordp(logp(é)) is large
too, on which we based the definition of our approximation lattices. However,
the converse is not necessarily true: ordp(logp(&)) being large does not
imply that ordp(f—l) is large. This is due to the fact that the p-adic
logarithm is a multi-branched function. To be more precise, for any rcot of
unity ¢ € @p we have logp(g) = 0 (cf. Section 2.3). In @p there exist
only the (p-1) th roots of unity if p 1is odd, and only +1 as roots of
unity if p =2 . Let ¢ be a primitive (p-1) th root of unity if p is
odd, and ¢ = -1 if p = 2 . It follows that ordp(logp(g)) being large
implies that for some ke { 0, 1, ..., p-2 ) (or ke {0, 1} if p=2)
ord_(log_(£)) = ord_(£-¢)
p P p

It turns out that the set of I ERREY X such ihat ord (£-1) (or
ordp(fil) if one wishes) is large, is a sublattice Fﬂ (or F# ) of F”

In the following lemma we shall prove this fact, and indicate how a basis of
this sublattice can be found. Then we can work with this sublattice instead
of Fp itself. Of course, in Lemmas 3.12, 3.14 and 3.16 we can replace F#

*
by these sublattices T , F: . For simplicity we assume that a; € @p for

all 1 . We take ay = 1 , and leave it to the reader to define appropriate
*
translated lattices F#(y), Ft(x) for the case a = 1
LEMMA 3.17. Let ay, e € @p be given numbers with ordp(ai) =0 for
all i , and ord (log (a.,)) minimal for i =n . Let x,, ..., X € Z . Put
P P 1 1 n
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n
£ = E a.l s B T ordp(logp(an))

Put for any u € N

n
= £
F# Cxppex) e | ordp(logp(>)) Z ot opg )
r 7" d (e+1) = p +
u t(xg- -,Xn) € | or p(ﬁ— )zt ),
# n
F# = { (xl,...,xn) e Z | ordp(ﬁ—l) > u + Ko }
*
Then Pi C F# c F# are lattices. If p = 2 they are all equal. If p =3
then F: =T Let further p = 3 . Let bl’ e, hn be a basis of F#
. T _
Define k(x) for any x = [xl,...,xn) € F“ by
php
£ =% (modp ), k@ € (0,1, ..., p2)
Let b!, ..., b’ be a basis of T such that
1 n n
'y =
k(b!) = ged{k(R)), ... k(b))
Put for i=1, ..., n-1 and p =5
* = k(b!)/k(b’ d (p-1)/2 *| < (p-1)/b
v; = k(ky)/k()) (mod (p- 2/2) 5 Iyl = (p-1) /4
* *
b. = b! - v.-b' ,
i i i ™n

and for p = 3 also

75 = k(b)/k(b)) (mod (p-1)) . Il = (p-1)/2
# [ # I3
b, = b - wi'hn

Further put for p = 5

2
i
o

Lem(k(b), (p-1)/2) /(b)) , b = 70

and for p = 3 also

#

lem(k(b)),p-1)/k(B)) . b =~

<
I

‘b’ .
n

#
n
* . * # # . . #
b is a basis of T' , and , ..., b is a basis of T .
n I3 1 n n

[l

*
Proof. It is trivial that FZ c Fﬂ C F“ , and that they are lattices. The

equalities of the lattices for p = 2, 3 follow from the fact that *1 are
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the only roots of unity in @p for

(mod (p-1))

characterized by

characterized by
i=1,

that for

k(b
)

#
k(b;)

*
Note that bl’

Write x €T as
"
x = Z
i=1
for i x #
or integers Yir Y5
K _ *
) =y,
_ #
k(x) =y,

*
So xe€T if
u

*
and only if T,

(p-1) | k(x)

*
k(bi) - v; k(b))

a linear function on

(p-1)/2 | k(z) .,

n-1

. Then it follows that

“k(b/) (mod (p-1)/2)

k(b)) (mod (p-1))

This proves the result.
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r
U

' # oo
k(bi) - vi k(b)) =
* , #
bn-1v By and by,
* o T a o
h RS z Yiby
i=1

* d
|y, » an

+y -

p:S

The points

#
n

€

2,

and the

It follows from the definitions in

= 0 (mod (p-1)/2)

0 (mod (p-1))

1’ ©n

b’
=n

F#
"

if and only if 7i | y#

T are
i

F# are
m

are both bases of F#

n
O



